ReductionTech Inc. GHG Offsetting System and Accompanying
Measurement Methodology.

ReductionTech’s proven oxide radical generating system is paired either with ambient moisture or
artificial steam to produce a concentrated stream of hydroxyl radicals. The hydroxyl is widely known
as mother nature’s magic bullet atmospheric cleanser, which includes the full range of GHGs, CH4,
PFC-CFCs, SLCPs, CO2, O3, N20 and Nox. It also reacts with VOCs and particulate matter, which
means that apportionment of each gas or constituent is necessary for carbon offsetting accuracy.
Hydroxyl permanently removes by oxidation/reduction all of these constituents, and thus is a sound
GHG removal method.

In an accompanying spreadsheet there is a calculator which provides a framework for apportionment to
the various GHGs, in ppm units. The average background levels of hydroxyl are calculated as well in
order to ensure that clarity of the full dose in the atmosphere can be determined. Concentrated streams
are emitted from elevated points, known as stacks, so that human exposure is safely controlled.

Simple Calculator of *OH Needs

Airshed Constituents in ppm
CAP ppm
CcO 0.871
SOX 0.0004
CH4 1.867
PM 2.5 0.0246
03 0.0246
Nox 0.0155.010-.045
CO2 0>0006x 410ppm 0.42 .01% of 420ppm buffered by "OH in H20
VOC 0.0593
SGHG basket 0.018638 synthetic GHGs or CFC gases
Total Reactant Flux 3.301038
(*JOH ppm over an hour
PPB-PPM (")OH naturs 0.0108 0.006"1800seconds per 3600 s)
added PPM (*)OH 11 22 195
.25 assist 0.0027 25% builds up in air
Total Flux 24 hour 0.0135 sample every 2 seconds

24H

DEFICIT OF OH 3.287538 PPM per 24 H.
OH produced in 24 H 0.5184 based on steady state, 2 s extinction
24 hour OH deficit 2.639538

Please view attached spreadsheet file.



The recyclable heated ceramic used overcomes the kinetic barrier for PFC-CFC gases as air is taken
into the system to harvest oxide radicals from the 21.8% oxygen fraction of air. While the cell runs at
950’C, the catalysis in the system enables the cleaving of the PFC-CFC and other gases while
harvesting oxide from air.

OH (L) evaporated

S into air
Polluted Air =
fed into
reactor, 12
psig system - - Clean N, released
— into air

The cells are arrayed in clusters of eight, scalable to hundreds of thousands, and have mass flow meters
on the oxide output stream. This mass flow meter provides the precise amount of oxide/hydroxyl
emitted to the atmosphere, where diffusion and meteorological processes cause full mixing and contact.
From the mass flow meter, a very accurate stoichiometric projection of GHG removal can be made.
The key is for authorities to review the baseline atmospheric constituent levels and agree on what is
present, and what is reacting with hydroxyl and what has been found to react inside the cells. Once that
exercise is undertaken, a standardized knowledge of the offsetting impacts of hydroxyl open air carbon
capture are formalized. Automated Mass flow meters on the equipment provide up to the second
measurements of gas flow in various units of mass and volume, which are recorded for the offsets
purchaser. The accompanying spreadsheet document is submitted for consideration of the precise
apportionment that will be used as determined by a scientific review.



The following basket of gases in Appendix 1 shows the approximate value of One Tonne of oxide when
used to treat these GHGs as an example calculation:
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Appendix 1 Example Valuation of Dose of Oxide versus Basket of GHGs



